• About
  • Subscribe
  • Contact
Wednesday, May 7, 2025
    Login
FutureIOT
  • Technology
    • Sensors and Instrumentation
    • Devices
    • Cloud and Platforms
    • Research and Development
    • Governance, Standards and Regulations
    • Application and Middleware
    • Security
    • Big Data and Analytics
    • AI and Machine Learning
  • Industry
    • Manufacturing
    • Transportation and Logistics
    • Retail and E-commerce
    • Banking and Financial Services
    • Government, Healthcare and Education
    • Industrial
  • Application
    • Smart Cities
    • Future Workplace
    • Commercial
    • Smart Home
    • Customer Engagement
  • Resources
  • Podchats
  • Videos
  • Events
No Result
View All Result
  • Technology
    • Sensors and Instrumentation
    • Devices
    • Cloud and Platforms
    • Research and Development
    • Governance, Standards and Regulations
    • Application and Middleware
    • Security
    • Big Data and Analytics
    • AI and Machine Learning
  • Industry
    • Manufacturing
    • Transportation and Logistics
    • Retail and E-commerce
    • Banking and Financial Services
    • Government, Healthcare and Education
    • Industrial
  • Application
    • Smart Cities
    • Future Workplace
    • Commercial
    • Smart Home
    • Customer Engagement
  • Resources
  • Podchats
  • Videos
  • Events
No Result
View All Result
FutureIOT
No Result
View All Result
Home Industry Government, Healthcare and Education

HKBU scientists develop barcode cell sensor

Gigi Onag by Gigi Onag
September 30, 2021
The research team led by Dr Ren Kangning, associate professor of the Department of Chemistry at HKBU (left), designed a fully automatic, microscope-free AST system that enables rapid and low-cost screening of drug-resistant bacteria by scanning the "barcode" on the cell sensor with a mobile app.

The research team led by Dr Ren Kangning, associate professor of the Department of Chemistry at HKBU (left), designed a fully automatic, microscope-free AST system that enables rapid and low-cost screening of drug-resistant bacteria by scanning the "barcode" on the cell sensor with a mobile app.

Research scientists at Hong Kong Baptist University (HKBU) have developed a cell sensor with barcode -like micro-channel structure that allows rapid and low-cost screening of drug-resistant bacteria.

The barcode cell sensor could potentially be used on a large-scale in resource-limited situations such as frequent safety screenings of water, food and public facilities, as well as urgent surveys of massive samples during an infectious disease outbreak, particularly in developing countries.

"Our barcode testing system is a promising new tool in the fight against antimicrobial resistance. We hope that it will benefit the routine screening of drug-resistant bacteria in the food industry, public areas and healthcare facilities as it does not require advanced clinical facilities or professional testing skills," said Dr. Ren Kangning, associate professor of the Department of Chemistry at HKBU.

Dr. Ren led the research team that designed a fully automatic, microscope-free antimicrobial susceptibility testing (AST) system.  Apart from researchers from HKBU's Department of Chemistry, the research team of the "barcode" cell sensor also included scientists from the Department of Computer Science at HKBU and the School of Medicine at Stanford University.

The team has applied a patent for their invention.

Rapid yet low-cost approach to identifying drug-resistant bacteria

The  overuse and misuse of antibiotics have resulted to drug-resistant bacteria. AST is used to determine which antibiotics can effectively inhibit the growth of a certain type of bacteria effectively.

However, conventional AST methods are too slow, as they require 16 to 24 hours for results, while modern rapid ASTs are expensive and require elaborated laboratory equipment. A rapid and cost-effective strategy is therefore needed to screen bacterial samples onsite, with advanced laboratory testing arranged only for those suspected of containing drug-resistant bacteria.

The barcode cell sensor developed by HKBU enables rapid and low-cost screening of drug-resistant bacteria by scanning the "barcode" on the cell sensor with a mobile app. It is a fully automatic, microscope-free AST system comprising of  two main parts: a cell culture zone and a "barcode" cell sensor.

The cell culture zone consists of a set of micro-channels filled with fluids that contain cell culture media as well as different concentrations of the antibiotic. The "barcode" cell sensor contains an array of "adaptive linear filters" arranged in parallel that resembles a "barcode" structure.

Users can finish the onsite screening within three hours by scanning the "barcode" with a mobile app. Furthermore,  the barcode cell sensor has a  low production cost, estimated at under US$1 per piece.

“We plan to develop our invention into a portable AST instrument, and ultimately, we hope it can be used in resource-limited regions," said Dr. Ren.

How the barcode cell sensor works

When conducting AST with the system, bacterial samples will be injected into and incubated in the cell culture zone. Bacteria in the test sample inside the micro-channels show different proliferation rates depending on different concentrations of the antibiotic.

After completion of the culture period, the bacterial cells will flow through the "adaptive linear filters". The cells will not accumulate around the nanopores on the sidewalls of the micro-channels, instead they will be driven down by the fluid and be collected from the end of the micro-channels. The accumulated cells will then form visible vertical bars, the lengths of which are proportional to the quantity of bacteria cells cultured under the different concentrations of the antibiotic.

A cell phone equipped with a macro-lens can then be used to photograph the "barcode" created by the AST. The image will be analysed automatically by the mobile app.

After the culture period, if all the "bars" of the cell sensor have similar lengths, it means the tested antibiotic cannot inhibit the growth of the bacteria, and thus the bacterial sample is resistant to the tested antibiotic. If the length of the "bars" is in general inversely proportional to the concentration of the antibiotic in the micro-channels, it shows that the tested antibiotic is generally effective at prohibiting the growth of the bacteria, and thus the bacteria is not drug-resistant. When two adjacent "bars" show a sharp difference in terms of length, it indicates that the antimicrobial effect of the antibiotic leaps when its concentration reaches a particular level.

The HKBU  research team tested E. coli and S. aureus with the "barcode" cell sensor and the results were consistent with those of the conventional AST. The test can be completed in three hours, which is much faster than the conventional AST. Microfluidic approaches developed by other researchers can also attain comparable speed, but they rely on expensive instruments for analysis in general. 

Related:  Alibaba Cloud, Semtech expand partnership to speed up IoT development in China
Tags: barcode cell sensorconnected deviceshealthcarehealthcare technologyHong KongHong Kong Baptist Univeristymobile appsensors
Gigi Onag

Gigi Onag

Gigi has more than 15 years of experience in technology journalism, covering various aspects of enterprise IT and telecommunications from both business and technology perspective. Before joining CXOCIETY as editor for FutureIoT in July 2019, she was assistant editor of ComputerWorld Hong Kong. Based in Hong Kong, she started with regional IT publications under CMP Asia (now Informa), including Asia Computer Weekly, Intelligent Enterprise Asia and Network Computing Asia and Teledotcom Asia. She had contributed articles to South China Morning Post, TechTarget and PC Market among others.

No Result
View All Result

Recent Posts

  • Surge in ambient IoT to pave the way for sustainable tech
  • Imbibing AI skills into Singapore’s future workforce today
  • Asia Pacific's AI ambitions hinge on next-generation networks
  • Gartner urges supply chain leaders to adopt cost-to-serve model
  • Navigating cyber chaos while safeguarding Asia's supply chains

Categories

  • Agriculture
  • AI and Machine Learning
  • Application
  • Application and Middleware
  • Automotive
  • Banking and Financial Services
  • Big Data and Analytics
  • Blockchain
  • Case Studies
  • Change Healthcare
  • CHRO
  • Cloud and Platforms
  • Commercial
  • Construction
  • Consumer
  • Customer Engagement
  • Devices
  • ESG
  • Future Workplace
  • FutureCOO
  • Governance, Standards and Regulations
  • Government, Healthcare and Education
  • Hospitality and Tourism
  • Industrial
  • Industry
  • IT-OT integration
  • Manufacturing
  • Networking
  • Operations
  • Research and Development
  • Retail and E-commerce
  • Security
  • Sensors and Instrumentation
  • Smart Cities
  • smart contracts
  • Smart Home
  • Start-ups
  • Supply chain
  • Technology
  • Telecommunications
  • TIBCO
  • Transportation and Logistics
  • Videos
  • Whitepapers

About FutureIoT

Asia’s ONLY dedicated IoT publication

The race to harness the power of Internet of Things (IoT) is here. FutureIoT is dedicated to individuals, as well as public and private organizations looking to tap the potential of IoT to transform the way we live, work and do business. FutureIoT is the dedicated media that provides the single source of truth about IoT, the technology, its application and regulation, originating from Asia. << Read more >>

Quick Links

  • Subscribe
  • Contact
  • Privacy Policy
  • Cookie Policy
  • Terms of Use

Categories

Recent News

Photo by John Tekeridis: https://www.pexels.com/photo/round-grey-speaker-on-brown-board-1072851/

Surge in ambient IoT to pave the way for sustainable tech

May 7, 2025
Imbibing AI skills into Singapore’s future workforce today

Imbibing AI skills into Singapore’s future workforce today

May 6, 2025
  • Privacy Policy
  • Terms of Use
  • Cookie Policy

Copyright © 2022 Cxociety Pte Ltd | Designed by Pixl

Login to your account below

or

Not a member yet? Register here

Forgotten Password?

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Technology
    • Sensors and Instrumentation
    • Devices
    • Cloud and Platforms
    • Research and Development
    • Governance, Standards and Regulations
    • Application and Middleware
    • Security
    • Big Data and Analytics
    • AI and Machine Learning
  • Industry
    • Manufacturing
    • Transportation and Logistics
    • Retail and E-commerce
    • Banking and Financial Services
    • Government, Healthcare and Education
    • Industrial
  • Application
    • Smart Cities
    • Future Workplace
    • Commercial
    • Smart Home
    • Customer Engagement
  • Resources
  • Podchats
  • Videos
  • Events
Login

Copyright © 2022 Cxociety Pte Ltd | Designed by Pixl

Subscribe